open a route to various hyperalkylations of cationic $\mathrm{C}_{5} \mathrm{Me}_{5}$ complexes and of other permethylated π ligands. The dramatic difference between the $\mathrm{C}_{6} \mathrm{Me}_{6}$ ligand in eq 1 (single branching) and the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligand (double branching) arises essentially because of the difference in steric bulk between the C_{5} and C_{6} rings whose internal angles are respectively 72° and 60°. These internal angles are also responsible for the large difference in rotational barriers of the $i-\mathrm{Pr}$ groups in 2 and $\mathrm{C}_{6}-i-\mathrm{Pr}_{6}{ }^{5 \mathrm{c}}$

Acknowledgment. We are grateful to Dr. J.-R. Hamon and P. Hamon (Rennes) for recording the variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra, and helpful discussions with these scientists and with Dr. J. Okuda (Garching) are gratefully acknowledged.

Registry No. 1, 126580-33-4; 2, 126580-35-6; 3, 126580-37-8.
Supplementary Material Available: Experimental procedures for the synthesis of 2 and 3 , analytical and spectroscopic $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$ NMR) data for 2 and 3, mass spectral data and mass spectrum for 4 , and ${ }^{1} \mathrm{H}$ and $\left[{ }^{1} \mathrm{H}\right]^{13} \mathrm{C}$ NMR spectra for 2 and 3 (10 pages). Ordering information is given on any current masthead page.

A Direct Total Synthesis of (+)-Longifolene via an Intramolecular Diels-Alder Strategy

Bo Lei and Alex G. Fallis*

The Ottawa-Carleton Chemistry Institute Department of Chemistry, University of Ottawa Ottawa, Ontario, Canada KlN $6 N 5$

Received December 26, 1989
The topological framework represented by the sesquiterpene longifolene (1) continues to play an important and historic role in organic chemistry. ${ }^{1-5}$ In particular, the longifolene skeleton has served as a subject for synthetic planning and strategy, ${ }^{3,5}$ and the total syntheses reported to date ${ }^{3}$ reflect this diversity. From the standpoint of retrosynthetic analysis, the strategic double disconnection of $\mathbf{1}$ to a triene precursor of type $\mathbf{2}$ has considerable appeal and as such has been widely noted. ${ }^{3}$ a,ter,, 5 However, as an early approach to longifolene showed, ${ }^{4 e}$ the propensity of substituted cyclopentadienes to undergo facile 1,5 -sigmatropic rearrangement prior to cyclization takes precedence. Thus for this strategy to succeed, either the rearrangement must be blocked, ${ }^{6}$ conditions developed where cyclization can compete efficiently, ${ }^{7}$ or alternatively constraints built into the system so the desired

[^0]Scheme Ia

${ }^{a}$ (a) LDA, THF, $-40^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Me}, \mathrm{CdCl}_{2}, 30 \mathrm{~min} ; 2 \mathrm{~h}, 0$ ${ }^{\circ} \mathrm{C}, 73 \%$. (b) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}, 4 \mathrm{~h}, 22{ }^{\circ} \mathrm{C}, 83 \%$. (c) Toluene, microwave, sealed tube, $2.5 \mathrm{~h}, 97 \%$. (d) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}$, EtOAc, $30 \mathrm{psi}, 4$ h LiAlH ${ }_{4}$, ether, $0-2{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 95 \%$. (e) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, ether, $6 \mathrm{~h}, 0$ ${ }^{\circ} \mathrm{C}, 74 \%$. (f) $\mathrm{ClC}(=\mathrm{S}) \mathrm{OPh}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 22{ }^{\circ} \mathrm{C}$; $n \mathrm{nBu}_{3} \mathrm{SnH}$, AIBN, toluene, $4 \mathrm{~h}, 110^{\circ} \mathrm{C}, 71 \%$. (g) $\mathrm{NaI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $22^{\circ} \mathrm{C}, 1 \mathrm{~h}\left(\mathrm{f}, 50 \%\right.$). (h) $\mathrm{C}_{6} \mathrm{H}_{6}$, flow system, $525^{\circ} \mathrm{C}, 56 \%$.
cyclization is the preferred one. Unfortunately, blocking the sigmatropic reaction is not necessarily straightforward, since even chlorine migrates prior to cyclization in a related case, ${ }^{4,8,8}$ although we have demonstrated that the cyclopropane moiety present in a spiro[2.4]heptadiene system can be used effectively for this purpose and as a latent carbon source. ${ }^{6}$ Molecular models and molecular mechanics calculations suggest that if the dienophile

[^1]is constrained to a six-membered ring as illustrated in 3 , then the preferred pathway for intramolecular cycloaddition should generate the desired tricyclic nucleus for longifolene directly, and the cyclopentadiene isomers will cease to be a problem. This analysis has been reduced to practice and successfully applied to the total synthesis of (+)-longifolene (1) in which one key chiral center induces the relative configuration during the intramolecular cycloaddition and is subsequently removed.

Condensation of 1,2-epoxy-3-butanone with cyclopentadiene in methanol containing pyrrolidine afforded the fulvene 4 (Scheme I) in 86% yield. 9 Addition of methyllithium to 4 generated the cyclopentadienyl anion 5 in situ, which cyclized spontaneously in the favored exo-tet manner to the racemic spiro[2.4]hepta-4,6-diene alcohol $6(65 \%)$. Treatment of this alcohol with $(-)$-methyl chloroformate (prepared from (-)-methanol and phosgene, toluene, $0^{\circ} \mathrm{C}$) allowed chromatographic separation of the diastereomers and resolution of the $R-(+)$ isomer 6 after LiAlH_{4} reduction. ${ }^{10}$ Oxidation of the primary alcohol with active MnO_{2} dispersed on carbon provided the aldehyde 7 (81%).

Condensation of the aldehyde 7 with the anion derived from methyl 3 -methylcrotonate (LDA mediated by cadmium chloride, $\left.-40-0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 73 \%\right)^{11}$ initially resulted in the γ substitution product, which cyclized spontaneously to the lactone 8 . The crowded environment of the carbonyl center resulted in attack from the less hindered re face (away from the gem-dimethyl substituents) to form the $\mathrm{C}_{5}(R)$ enantiomer preferentially ($9: 1$). The cyclopropyl bonds in 8 are strained and polarized, with the negative dipole toward the cyclopentadiene ring, rendering them susceptible to acid-catalyzed cleavage. Consequently, treatment of 8 in methanol containing $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $22^{\circ} \mathrm{C}$ resulted in the formal addition of methanol to form the $\mathrm{C}_{5}(R), \mathrm{C}_{1}{ }^{\prime}(R)$-substituted cyclopentadiene $9(83 \%)$ as a mixture of diene isomers. The triene 9 was heated in a sealed glass tube in toluene in a microwave oven for 2.5 h , to afford a single adduct (97%). ${ }^{12}$ This material displayed two olefinic hydrogen signals at $\delta 6.24$ and 6.32 in its ${ }^{1} \mathrm{H}$ NMR spectrum and clearly rules out the Bredt olefin structures 14 and 15. In contrast to 11 , adducts 12 and 13 contain two methylene and three quaternary carbons (excluding the carbonyl).
(9) Antczak, K.; Kingston, J. F.; Fallis, A. G. Can. J. Chem. 1984, 62, 2451.
(10) (a) Westley, J. W.; Halpern, B. J. Org. Chem. 1968, 33, 3978. (b) Jeyaraj, G. L.; Porter, W. R. J. Chromatogr. 1984, 315, 378.
(11) Lei, B.; Fallis, A. G. Tetrahedron Lett. 1986, 27, 5193.
(12) We have found microwave heating to be a very useful technique for a variety of thermal transformations. The sample is enclosed in a glass pressure tube equipped with a threaded Teflon cap which extends through a small hole in the top of the oven. The base of the tube rests in a beaker packed with vermiculite. Under these conditions, cyclizations that proceed in $<20 \%$ in 0 -dichlorobenzene over $48-72 \mathrm{~h}$ afforded yields of $75-100 \%$ in $2-3 \mathrm{~h}$. Toluene is the solvent of choice. See also: Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. Tetrahedron Lett. 1986, 27, 279. Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Tetrahedron Leti. 1986, 27, 4945.

The ${ }^{13} \mathrm{C}$ NMR spectrum of the Diels-Alder product displayed a single signal at $\delta 41.5$ due to the ring methylene carbon at C_{13} and only two quaternary carbon signals at 40.4 (C_{7} gem-dimethyl) and $56.3\left(C_{1}\right)$. These features are only consistent with structure 11, which must have arisen from the exo transition state 10 as illustrated, and excluded the other possible adducts 12-15. The arrangement in $\mathbf{1 0}$ is the only geometry that can be achieved readily due to the chirality of C_{5} and the restricted rotation that also controls the development of the additional chiral centers in the adduct. This represents the first direct preparation of a cycloheptane in a bridged ring system from a carbocyclic precursor in preference to a cyclohexane bridge. ${ }^{13}$ However, in this instance, because of the constrained nature of the dienophile, the competing pathways to the cyclohexane systems 12-15 are less favorable. This fact is reflected in the ratios of the relative energies of these adducts 11:12:13:14:15 (1:7:4.7:3.6:4.1). ${ }^{14}$ The twisted nature of $\mathbf{1 2}$ is apparent by inspection while its isomer 13, which would arise from addition to the opposite face, has the cyclohexane side chain in a boat conformation and also contains a methyl-hydrogen bowsprit interaction.

Selective functional-group manipulations completed the synthesis in the following manner. Hydrogenation of the double bond ($\mathrm{Pd} / \mathrm{C}, 30 \mathrm{psi}, 99 \%$), reduction of the lactone $\left(\mathrm{LiAlH}_{4}, 96 \%\right)$, and selective acetylation ($\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 0^{\circ} \mathrm{C}, 74 \%$) afforded 16. The chiral secondary alcohol, having fulfilled its role, was removed under free-radical conditions (ClCSOPh, AIBN, $\mathrm{nBu}_{3} \mathrm{SnH}$), ${ }^{15}$ the methyl ether cleaved ($\mathrm{NaI}, \mathrm{TMSCl}, \mathrm{Et}_{3} \mathrm{~N}$), ${ }^{16}$ and the resulting alcohol similarly removed, to give the acetate 17. Pyrolysis of this acetate in a flow system at $525^{\circ} \mathrm{C}$ provided (+)-longifolene (56%), which was identical with an authentic sample of natural $\left(+\right.$)-longifolene by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, infrared, and highresolution mass spectral comparison.

In conclusion, a carefully selected [4+2] cycloaddition step, in which competing pathways are energetically unfavorable, has resulted in a direct total synthesis of (+)-longifolene. The sequence required 12 steps from cyclopentadiene in 8.2% overall yield from aldehyde 7. This general strategy may be extended to other pericyclic reactions for the synthesis of diverse natural product skeletons.

Acknowledgment. We are grateful to the University of Ottawa, Memorial University of Newfoundland (where this work was initiated and represents the Ph.D. research of L.B.), and the Natural Sciences and Engineering Research Council of Canada for financial support of this research.

Supplementary Material Available: Spectroscopic data for compounds $1,6-9,11$, and 16-18 (3 pages). Ordering information is given on any current masthead page.
(13) (a) Fallis, A. G. Can. J. Chem. 1984, 62, 183. (b) Ciganek, E. Org. React. (N.Y.) 1984, 32, 1. (c) Craig, D. Chem. Soc. Rev. 1987, 16, 187. (d) Stille, J. R.; Grubbs, R. H. J. Org. Chem. 1989, 54, 434.
(14) These relative energies ($\mathrm{kcal} / \mathrm{mol}$) were determined by using Alchemy II (Tripos Associates Inc., 1699 South Hanley Rd., St. Louis, MO 63144). On the basis of the MM2 molecular mechanics system of Allinger (Allinger, N. L. Adv. Phys. Org. Chem. 1976, 13, 1) and a variation of the COSMIC force field (Vinter, J. G.; Davis, A.; Saunders, M. R. J. Comput.-Aided Mol. Des. 1987, 1, 31).
(15) Robins, M. J.; Wilson, J. S. J. Am. Chem. Soc. 1981, 103, 932.
(16) $\mathrm{Et}_{3} \mathrm{~N}$ is essential for the success of this reaction to avoid concomitant cleavage of the acetate.

[^0]: (1) Structure: (a) Naffa, P.; Ourisson, G. Chem. Ind. (London) 1953, 917. (b) Ourisson, P.; Ourisson, G. Bull. Soc. Chim. Fr. 1954, 21, 1412. (c) Ourisson, G. Bull. Soc. Chim. Fr. 1955, 22, 895. (d) Moffett, R. M.; Rogers, D. Chem. Ind. (London) 1953, 916.
 (2) Biosynthesis: Arigoni, D. Pure Appl. Chem. 1975, 41, 219.
 (3) Total syntheses: Corey, E. J.; Ohno, M.; Mitra, R. B.; Vatakencherry, P. A. J. Am. Chem. Soc. 1964, 86, 478. (b) McMurry, J. E.; Isser, S. J. J. Am. Chem. Soc. 1972, 94, 7132. (c) Volkmann, R. A.; Andrews, G. C.; Johnson, W. S. J. Am. Chem. Soc. 1975, 97, 4777. (d) Oppolzer, W.; Godel, T. J. Am. Chem. Soc. 1978, 100, 2583. (e) Oppolzer, W.; Godel, T. Helv. Chim. Acta 1984, 67, 1154. (f) Schultz, A. G.; Puig, S. J. Org. Chem. 1985, 50, 915. (g) Kuo, D. L.; Money, T. J. Chem. Soc., Chem. Commun. 1986, 1691. (h) Kuo, D. L.; Money, T. Can. J. Chem. 1988, 66, 1794.
 (4) Additional synthetic studies: (a) Scherrer, R. A. Ph.D. Thesis, University of Illinois, 1958; Diss. Abstr. 1958, 19, 960. (b) Hudak, N. J. Ph.D. Thesis, Cornell University, 1959; Diss. Abstr. 1959, 20, 79. (c) Napier, R. P. Ph.D. Thesis, University of Rochester, 1964; Diss. Abstr. 1964, 25, 1577. (d) Grant, J. E., Jr. Ph.D. Thesis, Pennsylvania State University, 1969; Diss. Abstr, B 1969, 29, 3653. (e) Brieger, G. J. Am. Chem. Soc. 1963, 85, 3783. (f) Glass, R. S.; Herzog, J. D.; Sobczak, R. L. J. Org. Chem. 1978, 43, 3209. (g) Attah-Poku, S. K.; Antczak, K.; Alward, S. J.; Fallis, A. G. Can. J. Chem. 1984, 62, 1717.
 (5) (a) Corey, E. J. Pure Appl. Chem. 1967, 14, 19. (b) Ireland, R. E. Organic Synthesis; Prentice-Hall: Englewood Cliffs, NJ, 1969; pp 116-119. (c) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; John Wiley: New York, 1989; pp 81-82.
 (6) (a) Gallacher, G.; Ng, A. S.; Attah-Poku, S. K.; Antczak, K.; Alward, S. J.; Kingston, J. F.; Fallis, A. G. Can. J. Chem. 1984, 62, 1709. (b) Antczak, K.; Kingston, J. F.; Fallis, A. G.; Hanson, A. Can. J. Chem. 1987, 65, 114.
 (7) (a) Corey, E. J.; Weinshenker, N. M.; Schaff, T. K.; Huber, W. J. Am. Chem. Soc. 1969, 91, 5675. (b) Corey, E. J.; Koelliker, U.; Neuffer, J. J. Am. Chem. Soc. 1971, 93, 1489.

[^1]: (8) As we have pointed out elsewhere (Fallis, A. G.; Breitholle, E. G. International Symposium on Stereochemistry, Kingston, ON, Canada, June 27-July 2, 1976; Abstract M1), an alternative solution employs a "brexane" intermediate followed by a double ring expansion. This approach has been used by Snowden in an imaginative synthesis of sativene (Snowden, R. L. Tetrahedron Lett. 1981, 22, 101; Tetrahedron 1986, 42, 3277).

